Worksheet answers for 2021-10-27

If you would like clarification on any problems, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1. The orientation of C is encoded in the unit tangent T; at every point there are two choices of such a unit tangent, corresponding to the two directions in which one can trace out the curve C.

Note that $\int_{C} \mathbf{F} \cdot \mathbf{T} \mathrm{~d} s$ is typically not useful for actually evaluating work integrals.

Answers to computations

Problem 1.

(a) Letting P, Q denote the components of \mathbf{F} as usual, we verify that $Q_{x}-P_{y}=0$:

$$
x h^{\prime}\left(x^{2}+y^{2}\right) 2 y-y h^{\prime}\left(x^{2}+y^{2}\right) 2 x=0 .
$$

Provided that the domain of \mathbf{F} is all of \mathbb{R}^{2} (which it will be, as long as $h(t)$ behaves nicely for all $t \geq 0$), it follows that F is conservative, because \mathbb{R}^{2} is simply connected.
(b) We want to find f such that

$$
\begin{aligned}
& f_{x}(x, y)=x h\left(x^{2}+y^{2}\right) \\
& f_{y}(x, y)=y h\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

Integrating the first equation with respect to x (using the substitution $u=x^{2}+y^{2}, \mathrm{~d} u=\mathrm{d} x$) gives

$$
f(x, y)=\frac{1}{2} g\left(x^{2}+y^{2}\right)+C(y)
$$

where $C(y)$ is any function of y. Differentiating this with respect to y we get

$$
f_{y}(x, y)=y h\left(x^{2}+y^{2}\right)+C^{\prime}(y)
$$

hence we have $C^{\prime}(y)=0$ by comparison to our original observations. Thus $C(y)$ is a constant, and a function such as $f(x, y)=\frac{1}{2} g\left(x^{2}+y^{2}\right)+42$ will suffice.
(c) The argument in (b) will produce a potential function that is defined on the same domain as \mathbf{F} (namely, the plane minus the origin). However, the argument in (a) is no longer conclusive, because the domain of \mathbf{F} is not simply connected. (It does show that \mathbf{F} is conservative on any simply connected subset of $\mathbb{R}^{2}-(0,0)$, though.)

Problem 2.

(a) C can be parametrized as $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$. The integral becomes

$$
\int_{0}^{2 \pi}\langle-\sin t, \cos t\rangle \cdot\langle-\sin t, \cos t\rangle \mathrm{d} t=\int_{0}^{2 \pi} \mathrm{~d} t=2 \pi .
$$

(b) Following the same procedure as in 1(b), one might find either of the functions

$$
f(x, y)=\arctan (y / x)+\text { constant, or } f(x, y)=-\arctan (x / y)+\text { constant } .
$$

Notice that the first is not defined when $x=0$, while the second is not defined when $y=0$. In either case, the domain of f is strictly smaller than that of \mathbf{F}.
(c) No, because (a) already showed that \mathbf{F} cannot be conservative on (any region containing) the circle C. Remember that to be conservative on some region, the work line integral over any closed loop in that region must be equal to zero.
(d) Although the vector field \mathbf{F} is not conservative on its entire domain, it is conservative on the region

$$
\left\{(x, y) \in \mathbb{R}^{2}: y \neq 0 \text { or } x<0\right\} .
$$

This is the plane minus the nonnegative x-axis, which is a simply connected region. It is possible to exhibit a potential function f on this region whose gradient is \mathbf{F} :

$$
f(x, y)=" \theta \text { " }= \begin{cases}-\arctan (x / y)+\pi / 2 & \text { if } y>0 \\ \arctan (y / x)+\pi & \text { if } x<0 \\ -\arctan (x / y)+3 \pi / 2 & \text { if } y<0\end{cases}
$$

This function assigns to each point (x, y) its polar angle θ, measured strictly between 0 and 2π.
Hence by the FTLI, the answer to this question is $f(3,-3)-f(1,1)=7 \pi / 4-\pi / 4=3 \pi / 2$.

